Castelnuovo–Mumford regularity, postulation numbers, and reduction numbers

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pm Numbers, Ambiguity, and Regularity

We introduce the pseudo-m-ary (Pm) number system in which numbers are represented by sums of the form ∑ i≥0 ai(m i+1 − 1). We characterize the Pm representations that are produced by the greedy algorithm and show that they form a regular set. In addition, we show that the set of Pm representations that are the sole representations for their corresponding numbers is also a regular set.

متن کامل

Multiplicities and Reduction Numbers

Let (R,m) be a Cohen–Macaulay local ring and let I be an ideal. There are at least five algebras built on I whose multiplicity data affect the reduction number r(I) of the ideal. We introduce techniques from the Rees algebra theory of modules to produce estimates for r(I), for classes of ideals of dimension one and two. Previous cases of such estimates were derived for ideals of dimension zero.

متن کامل

Zarankiewicz Numbers and Bipartite Ramsey Numbers

The Zarankiewicz number z(b; s) is the maximum size of a subgraph of Kb,b which does not contain Ks,s as a subgraph. The two-color bipartite Ramsey number b(s, t) is the smallest integer b such that any coloring of the edges of Kb,b with two colors contains a Ks,s in the rst color or a Kt,t in the second color.In this work, we design and exploit a computational method for bounding and computing...

متن کامل

Low Regularity Classes and Entropy Numbers

We note a sharp embedding of the Besov space B∞ 0,q(T) into exponential classes and prove entropy estimates for the compact embedding of subclasses with logarithmic smoothness, considered by Kashin and Temlyakov.

متن کامل

Schläfli numbers and reduction formula

We define so-called poset-polynomials of a graded poset and use it to give an explicit and general description of the combinatorial numbers in Schläfli’s (combinatorial) reduction formula. For simplicial and simple polytopes these combinatorial numbers can be written as functions of the numbers of faces of the polytope and the tangent numbers. We use the constructed formulas to determine the vo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra

سال: 2007

ISSN: 0021-8693

DOI: 10.1016/j.jalgebra.2007.01.015